MakeItFrom.com
Menu (ESC)

2017 Aluminum vs. EN AC-46000 Aluminum

Both 2017 aluminum and EN AC-46000 aluminum are aluminum alloys. They have 90% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 2017 aluminum and the bottom bar is EN AC-46000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
73
Elongation at Break, % 12 to 18
1.0
Fatigue Strength, MPa 90 to 130
110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
28
Tensile Strength: Ultimate (UTS), MPa 190 to 430
270
Tensile Strength: Yield (Proof), MPa 76 to 260
160

Thermal Properties

Latent Heat of Fusion, J/g 390
530
Maximum Temperature: Mechanical, °C 190
180
Melting Completion (Liquidus), °C 640
620
Melting Onset (Solidus), °C 510
530
Specific Heat Capacity, J/kg-K 880
880
Thermal Conductivity, W/m-K 150
100
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
26
Electrical Conductivity: Equal Weight (Specific), % IACS 110
82

Otherwise Unclassified Properties

Base Metal Price, % relative 10
10
Density, g/cm3 3.0
2.8
Embodied Carbon, kg CO2/kg material 8.0
7.6
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1140
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 66
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 470
170
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
49
Strength to Weight: Axial, points 17 to 40
26
Strength to Weight: Bending, points 24 to 42
33
Thermal Diffusivity, mm2/s 56
42
Thermal Shock Resistance, points 7.9 to 18
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.6 to 95.5
79.7 to 90
Chromium (Cr), % 0 to 0.1
0 to 0.15
Copper (Cu), % 3.5 to 4.5
2.0 to 4.0
Iron (Fe), % 0 to 0.7
0 to 1.3
Lead (Pb), % 0
0 to 0.35
Magnesium (Mg), % 0.4 to 0.8
0.050 to 0.55
Manganese (Mn), % 0.4 to 1.0
0 to 0.55
Nickel (Ni), % 0
0 to 0.55
Silicon (Si), % 0.2 to 0.8
8.0 to 11
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.15
0 to 0.25
Zinc (Zn), % 0 to 0.25
0 to 1.2
Residuals, % 0 to 0.15
0 to 0.25