MakeItFrom.com
Menu (ESC)

2017 Aluminum vs. Grade 33 Titanium

2017 aluminum belongs to the aluminum alloys classification, while grade 33 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 2017 aluminum and the bottom bar is grade 33 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
110
Elongation at Break, % 12 to 18
23
Fatigue Strength, MPa 90 to 130
250
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
41
Shear Strength, MPa 130 to 260
240
Tensile Strength: Ultimate (UTS), MPa 190 to 430
390
Tensile Strength: Yield (Proof), MPa 76 to 260
350

Thermal Properties

Latent Heat of Fusion, J/g 390
420
Maximum Temperature: Mechanical, °C 190
320
Melting Completion (Liquidus), °C 640
1660
Melting Onset (Solidus), °C 510
1610
Specific Heat Capacity, J/kg-K 880
540
Thermal Conductivity, W/m-K 150
21
Thermal Expansion, µm/m-K 24
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 110
6.9

Otherwise Unclassified Properties

Base Metal Price, % relative 10
55
Density, g/cm3 3.0
4.5
Embodied Carbon, kg CO2/kg material 8.0
33
Embodied Energy, MJ/kg 150
530
Embodied Water, L/kg 1140
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 66
86
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 470
590
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
35
Strength to Weight: Axial, points 17 to 40
24
Strength to Weight: Bending, points 24 to 42
26
Thermal Diffusivity, mm2/s 56
8.7
Thermal Shock Resistance, points 7.9 to 18
30

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.6 to 95.5
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.1
0.1 to 0.2
Copper (Cu), % 3.5 to 4.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.7
0 to 0.3
Magnesium (Mg), % 0.4 to 0.8
0
Manganese (Mn), % 0.4 to 1.0
0
Nickel (Ni), % 0
0.35 to 0.55
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Palladium (Pd), % 0
0.010 to 0.020
Ruthenium (Ru), % 0
0.020 to 0.040
Silicon (Si), % 0.2 to 0.8
0
Titanium (Ti), % 0 to 0.15
98.1 to 99.52
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0 to 0.4