MakeItFrom.com
Menu (ESC)

2017 Aluminum vs. C40500 Penny Bronze

2017 aluminum belongs to the aluminum alloys classification, while C40500 penny bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2017 aluminum and the bottom bar is C40500 penny bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
110
Elongation at Break, % 12 to 18
3.0 to 49
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
43
Shear Strength, MPa 130 to 260
210 to 310
Tensile Strength: Ultimate (UTS), MPa 190 to 430
270 to 540
Tensile Strength: Yield (Proof), MPa 76 to 260
79 to 520

Thermal Properties

Latent Heat of Fusion, J/g 390
200
Maximum Temperature: Mechanical, °C 190
190
Melting Completion (Liquidus), °C 640
1060
Melting Onset (Solidus), °C 510
1020
Specific Heat Capacity, J/kg-K 880
380
Thermal Conductivity, W/m-K 150
160
Thermal Expansion, µm/m-K 24
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
41
Electrical Conductivity: Equal Weight (Specific), % IACS 110
42

Otherwise Unclassified Properties

Base Metal Price, % relative 10
30
Density, g/cm3 3.0
8.8
Embodied Carbon, kg CO2/kg material 8.0
2.7
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1140
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 66
16 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 470
28 to 1200
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 46
18
Strength to Weight: Axial, points 17 to 40
8.5 to 17
Strength to Weight: Bending, points 24 to 42
10 to 17
Thermal Diffusivity, mm2/s 56
48
Thermal Shock Resistance, points 7.9 to 18
9.5 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.6 to 95.5
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.5 to 4.5
94 to 96
Iron (Fe), % 0 to 0.7
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0.4 to 0.8
0
Manganese (Mn), % 0.4 to 1.0
0
Silicon (Si), % 0.2 to 0.8
0
Tin (Sn), % 0
0.7 to 1.3
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
2.1 to 5.3
Residuals, % 0 to 0.15
0 to 0.5