MakeItFrom.com
Menu (ESC)

2017 Aluminum vs. N06250 Nickel

2017 aluminum belongs to the aluminum alloys classification, while N06250 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2017 aluminum and the bottom bar is N06250 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
210
Elongation at Break, % 12 to 18
46
Fatigue Strength, MPa 90 to 130
230
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
82
Shear Strength, MPa 130 to 260
500
Tensile Strength: Ultimate (UTS), MPa 190 to 430
710
Tensile Strength: Yield (Proof), MPa 76 to 260
270

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Mechanical, °C 190
980
Melting Completion (Liquidus), °C 640
1490
Melting Onset (Solidus), °C 510
1440
Specific Heat Capacity, J/kg-K 880
440
Thermal Expansion, µm/m-K 24
13

Otherwise Unclassified Properties

Base Metal Price, % relative 10
55
Density, g/cm3 3.0
8.6
Embodied Carbon, kg CO2/kg material 8.0
10
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1140
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 66
260
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 470
170
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
23
Strength to Weight: Axial, points 17 to 40
23
Strength to Weight: Bending, points 24 to 42
21
Thermal Shock Resistance, points 7.9 to 18
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.6 to 95.5
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0 to 0.1
20 to 23
Copper (Cu), % 3.5 to 4.5
0.25 to 1.3
Iron (Fe), % 0 to 0.7
7.4 to 19.4
Magnesium (Mg), % 0.4 to 0.8
0
Manganese (Mn), % 0.4 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
10.1 to 12
Nickel (Ni), % 0
50 to 54
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.2 to 0.8
0 to 0.090
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 0 to 0.15
0
Tungsten (W), % 0
0.25 to 1.3
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0