MakeItFrom.com
Menu (ESC)

2017A Aluminum vs. 5050 Aluminum

Both 2017A aluminum and 5050 aluminum are aluminum alloys. They have a very high 95% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 2017A aluminum and the bottom bar is 5050 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
68
Elongation at Break, % 2.2 to 14
1.7 to 22
Fatigue Strength, MPa 92 to 130
45 to 100
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 120 to 270
91 to 140
Tensile Strength: Ultimate (UTS), MPa 200 to 460
140 to 250
Tensile Strength: Yield (Proof), MPa 110 to 290
50 to 210

Thermal Properties

Latent Heat of Fusion, J/g 390
400
Maximum Temperature: Mechanical, °C 220
180
Melting Completion (Liquidus), °C 650
650
Melting Onset (Solidus), °C 510
630
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 150
190
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
50
Electrical Conductivity: Equal Weight (Specific), % IACS 100
170

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.0
2.7
Embodied Carbon, kg CO2/kg material 8.2
8.4
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1140
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.7 to 53
4.1 to 24
Resilience: Unit (Modulus of Resilience), kJ/m3 90 to 570
18 to 330
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
50
Strength to Weight: Axial, points 19 to 42
15 to 26
Strength to Weight: Bending, points 26 to 44
22 to 33
Thermal Diffusivity, mm2/s 56
79
Thermal Shock Resistance, points 8.9 to 20
6.3 to 11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.3 to 95.5
96.3 to 98.9
Chromium (Cr), % 0 to 0.1
0 to 0.1
Copper (Cu), % 3.5 to 4.5
0 to 0.2
Iron (Fe), % 0 to 0.7
0 to 0.7
Magnesium (Mg), % 0.4 to 1.0
1.1 to 1.8
Manganese (Mn), % 0.4 to 1.0
0 to 0.1
Silicon (Si), % 0.2 to 0.8
0 to 0.4
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.25
0 to 0.25
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0 to 0.15

Comparable Variants