MakeItFrom.com
Menu (ESC)

2017A Aluminum vs. EN AC-42200 Aluminum

Both 2017A aluminum and EN AC-42200 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 2017A aluminum and the bottom bar is EN AC-42200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
70
Elongation at Break, % 2.2 to 14
3.0 to 6.7
Fatigue Strength, MPa 92 to 130
86 to 90
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 200 to 460
320
Tensile Strength: Yield (Proof), MPa 110 to 290
240 to 260

Thermal Properties

Latent Heat of Fusion, J/g 390
500
Maximum Temperature: Mechanical, °C 220
170
Melting Completion (Liquidus), °C 650
610
Melting Onset (Solidus), °C 510
600
Specific Heat Capacity, J/kg-K 880
910
Thermal Conductivity, W/m-K 150
150
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
40
Electrical Conductivity: Equal Weight (Specific), % IACS 100
140

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.0
2.6
Embodied Carbon, kg CO2/kg material 8.2
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1140
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.7 to 53
9.0 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 90 to 570
410 to 490
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 46
53
Strength to Weight: Axial, points 19 to 42
34 to 35
Strength to Weight: Bending, points 26 to 44
40 to 41
Thermal Diffusivity, mm2/s 56
66
Thermal Shock Resistance, points 8.9 to 20
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.3 to 95.5
91 to 93.1
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.5 to 4.5
0 to 0.050
Iron (Fe), % 0 to 0.7
0 to 0.19
Magnesium (Mg), % 0.4 to 1.0
0.45 to 0.7
Manganese (Mn), % 0.4 to 1.0
0 to 0.1
Silicon (Si), % 0.2 to 0.8
6.5 to 7.5
Titanium (Ti), % 0 to 0.25
0 to 0.25
Zinc (Zn), % 0 to 0.25
0 to 0.070
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0 to 0.1