MakeItFrom.com
Menu (ESC)

2017A Aluminum vs. EN AC-51200 Aluminum

Both 2017A aluminum and EN AC-51200 aluminum are aluminum alloys. They have a moderately high 90% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 2017A aluminum and the bottom bar is EN AC-51200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
67
Elongation at Break, % 2.2 to 14
1.1
Fatigue Strength, MPa 92 to 130
100
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
25
Tensile Strength: Ultimate (UTS), MPa 200 to 460
220
Tensile Strength: Yield (Proof), MPa 110 to 290
150

Thermal Properties

Latent Heat of Fusion, J/g 390
410
Maximum Temperature: Mechanical, °C 220
170
Melting Completion (Liquidus), °C 650
640
Melting Onset (Solidus), °C 510
570
Specific Heat Capacity, J/kg-K 880
910
Thermal Conductivity, W/m-K 150
92
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
22
Electrical Conductivity: Equal Weight (Specific), % IACS 100
74

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.0
2.6
Embodied Carbon, kg CO2/kg material 8.2
9.6
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1140
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.7 to 53
2.2
Resilience: Unit (Modulus of Resilience), kJ/m3 90 to 570
160
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
51
Strength to Weight: Axial, points 19 to 42
24
Strength to Weight: Bending, points 26 to 44
31
Thermal Diffusivity, mm2/s 56
39
Thermal Shock Resistance, points 8.9 to 20
10

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.3 to 95.5
84.5 to 92
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.5 to 4.5
0 to 0.1
Iron (Fe), % 0 to 0.7
0 to 1.0
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0.4 to 1.0
8.0 to 10.5
Manganese (Mn), % 0.4 to 1.0
0 to 0.55
Nickel (Ni), % 0
0 to 0.1
Silicon (Si), % 0.2 to 0.8
0 to 2.5
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0 to 0.25
0 to 0.2
Zinc (Zn), % 0 to 0.25
0 to 0.25
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0 to 0.15