MakeItFrom.com
Menu (ESC)

2018 Aluminum vs. 771.0 Aluminum

Both 2018 aluminum and 771.0 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 2018 aluminum and the bottom bar is 771.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
85 to 120
Elastic (Young's, Tensile) Modulus, GPa 73
70
Elongation at Break, % 9.6
1.7 to 6.5
Fatigue Strength, MPa 120
92 to 180
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 420
250 to 370
Tensile Strength: Yield (Proof), MPa 310
210 to 350

Thermal Properties

Latent Heat of Fusion, J/g 390
380
Maximum Temperature: Mechanical, °C 220
180
Melting Completion (Liquidus), °C 640
630
Melting Onset (Solidus), °C 510
620
Specific Heat Capacity, J/kg-K 870
870
Thermal Conductivity, W/m-K 150
140 to 150
Thermal Expansion, µm/m-K 22
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
27
Electrical Conductivity: Equal Weight (Specific), % IACS 120
82

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.1
3.0
Embodied Carbon, kg CO2/kg material 8.1
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1130
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37
4.4 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 670
310 to 900
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
46
Strength to Weight: Axial, points 38
23 to 35
Strength to Weight: Bending, points 41
29 to 39
Thermal Diffusivity, mm2/s 57
54 to 58
Thermal Shock Resistance, points 19
11 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 89.7 to 94.4
90.5 to 92.5
Chromium (Cr), % 0 to 0.1
0.060 to 0.2
Copper (Cu), % 3.5 to 4.5
0 to 0.1
Iron (Fe), % 0 to 1.0
0 to 0.15
Magnesium (Mg), % 0.45 to 0.9
0.8 to 1.0
Manganese (Mn), % 0 to 0.2
0 to 0.1
Nickel (Ni), % 1.7 to 2.3
0
Silicon (Si), % 0 to 0.9
0 to 0.15
Titanium (Ti), % 0
0.1 to 0.2
Zinc (Zn), % 0 to 0.25
6.5 to 7.5
Residuals, % 0 to 0.15
0 to 0.15