MakeItFrom.com
Menu (ESC)

2018 Aluminum vs. N06035 Nickel

2018 aluminum belongs to the aluminum alloys classification, while N06035 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2018 aluminum and the bottom bar is N06035 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
210
Elongation at Break, % 9.6
34
Fatigue Strength, MPa 120
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
84
Shear Strength, MPa 270
440
Tensile Strength: Ultimate (UTS), MPa 420
660
Tensile Strength: Yield (Proof), MPa 310
270

Thermal Properties

Latent Heat of Fusion, J/g 390
340
Maximum Temperature: Mechanical, °C 220
1030
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 510
1390
Specific Heat Capacity, J/kg-K 870
450
Thermal Expansion, µm/m-K 22
13

Otherwise Unclassified Properties

Base Metal Price, % relative 11
60
Density, g/cm3 3.1
8.4
Embodied Carbon, kg CO2/kg material 8.1
10
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1130
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37
180
Resilience: Unit (Modulus of Resilience), kJ/m3 670
170
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 38
22
Strength to Weight: Bending, points 41
20
Thermal Shock Resistance, points 19
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 89.7 to 94.4
0 to 0.4
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0 to 0.1
32.3 to 34.3
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 3.5 to 4.5
0 to 0.3
Iron (Fe), % 0 to 1.0
0 to 2.0
Magnesium (Mg), % 0.45 to 0.9
0
Manganese (Mn), % 0 to 0.2
0 to 0.5
Molybdenum (Mo), % 0
7.6 to 9.0
Nickel (Ni), % 1.7 to 2.3
51.1 to 60.2
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.9
0 to 0.6
Sulfur (S), % 0
0 to 0.015
Tungsten (W), % 0
0 to 0.6
Vanadium (V), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0