MakeItFrom.com
Menu (ESC)

2024 Aluminum vs. EN 1.4646 Stainless Steel

2024 aluminum belongs to the aluminum alloys classification, while EN 1.4646 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2024 aluminum and the bottom bar is EN 1.4646 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 4.0 to 16
34
Fatigue Strength, MPa 90 to 180
340
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Shear Strength, MPa 130 to 320
500
Tensile Strength: Ultimate (UTS), MPa 200 to 540
750
Tensile Strength: Yield (Proof), MPa 100 to 490
430

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Mechanical, °C 200
910
Melting Completion (Liquidus), °C 640
1390
Melting Onset (Solidus), °C 500
1340
Specific Heat Capacity, J/kg-K 880
480
Thermal Expansion, µm/m-K 23
17

Otherwise Unclassified Properties

Base Metal Price, % relative 11
13
Density, g/cm3 3.0
7.7
Embodied Carbon, kg CO2/kg material 8.3
2.8
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1140
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 68
220
Resilience: Unit (Modulus of Resilience), kJ/m3 70 to 1680
460
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 18 to 50
27
Strength to Weight: Bending, points 25 to 49
24
Thermal Shock Resistance, points 8.6 to 24
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 90.7 to 94.7
0
Carbon (C), % 0
0.020 to 0.1
Chromium (Cr), % 0 to 0.1
17 to 19
Copper (Cu), % 3.8 to 4.9
1.5 to 3.0
Iron (Fe), % 0 to 0.5
59 to 67.3
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0.3 to 0.9
10.5 to 12.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
3.5 to 4.5
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0