MakeItFrom.com
Menu (ESC)

2024 Aluminum vs. EN 2.4952 Nickel

2024 aluminum belongs to the aluminum alloys classification, while EN 2.4952 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2024 aluminum and the bottom bar is EN 2.4952 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 4.0 to 16
17
Fatigue Strength, MPa 90 to 180
370
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
74
Shear Strength, MPa 130 to 320
700
Tensile Strength: Ultimate (UTS), MPa 200 to 540
1150
Tensile Strength: Yield (Proof), MPa 100 to 490
670

Thermal Properties

Latent Heat of Fusion, J/g 390
330
Maximum Temperature: Mechanical, °C 200
980
Melting Completion (Liquidus), °C 640
1350
Melting Onset (Solidus), °C 500
1300
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 120
12
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 90
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 11
55
Density, g/cm3 3.0
8.3
Embodied Carbon, kg CO2/kg material 8.3
9.8
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1140
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 68
170
Resilience: Unit (Modulus of Resilience), kJ/m3 70 to 1680
1180
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
23
Strength to Weight: Axial, points 18 to 50
38
Strength to Weight: Bending, points 25 to 49
29
Thermal Diffusivity, mm2/s 46
3.1
Thermal Shock Resistance, points 8.6 to 24
33

Alloy Composition

Aluminum (Al), % 90.7 to 94.7
1.0 to 1.8
Boron (B), % 0
0 to 0.0080
Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0 to 0.1
18 to 21
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 3.8 to 4.9
0 to 0.2
Iron (Fe), % 0 to 0.5
0 to 1.5
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0.3 to 0.9
0 to 1.0
Nickel (Ni), % 0
65 to 79.2
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.15
1.8 to 2.7
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0