MakeItFrom.com
Menu (ESC)

2030 Aluminum vs. 360.0 Aluminum

Both 2030 aluminum and 360.0 aluminum are aluminum alloys. They have 90% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 2030 aluminum and the bottom bar is 360.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
72
Elongation at Break, % 5.6 to 8.0
2.5
Fatigue Strength, MPa 91 to 110
140
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Shear Strength, MPa 220 to 250
190
Tensile Strength: Ultimate (UTS), MPa 370 to 420
300
Tensile Strength: Yield (Proof), MPa 240 to 270
170

Thermal Properties

Latent Heat of Fusion, J/g 390
530
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 640
590
Melting Onset (Solidus), °C 510
570
Specific Heat Capacity, J/kg-K 870
900
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
34
Electrical Conductivity: Equal Weight (Specific), % IACS 99
110

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 3.1
2.6
Embodied Carbon, kg CO2/kg material 8.0
7.8
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1140
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 26
6.4
Resilience: Unit (Modulus of Resilience), kJ/m3 390 to 530
200
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 45
53
Strength to Weight: Axial, points 33 to 38
32
Strength to Weight: Bending, points 37 to 40
38
Thermal Diffusivity, mm2/s 50
55
Thermal Shock Resistance, points 16 to 19
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 88.9 to 95.2
85.1 to 90.6
Bismuth (Bi), % 0 to 0.2
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.3 to 4.5
0 to 0.6
Iron (Fe), % 0 to 0.7
0 to 2.0
Lead (Pb), % 0.8 to 1.5
0
Magnesium (Mg), % 0.5 to 1.3
0.4 to 0.6
Manganese (Mn), % 0.2 to 1.0
0 to 0.35
Nickel (Ni), % 0
0 to 0.5
Silicon (Si), % 0 to 0.8
9.0 to 10
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0 to 0.5
Residuals, % 0 to 0.3
0 to 0.25