MakeItFrom.com
Menu (ESC)

2030 Aluminum vs. EN 2.4879 Cast Nickel

2030 aluminum belongs to the aluminum alloys classification, while EN 2.4879 cast nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2030 aluminum and the bottom bar is EN 2.4879 cast nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 5.6 to 8.0
3.4
Fatigue Strength, MPa 91 to 110
110
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 370 to 420
490
Tensile Strength: Yield (Proof), MPa 240 to 270
270

Thermal Properties

Latent Heat of Fusion, J/g 390
330
Maximum Temperature: Mechanical, °C 190
1150
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 510
1400
Specific Heat Capacity, J/kg-K 870
460
Thermal Conductivity, W/m-K 130
11
Thermal Expansion, µm/m-K 23
13

Otherwise Unclassified Properties

Base Metal Price, % relative 10
55
Density, g/cm3 3.1
8.5
Embodied Carbon, kg CO2/kg material 8.0
8.3
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1140
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 26
14
Resilience: Unit (Modulus of Resilience), kJ/m3 390 to 530
180
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
23
Strength to Weight: Axial, points 33 to 38
16
Strength to Weight: Bending, points 37 to 40
16
Thermal Diffusivity, mm2/s 50
2.8
Thermal Shock Resistance, points 16 to 19
13

Alloy Composition

Aluminum (Al), % 88.9 to 95.2
0
Bismuth (Bi), % 0 to 0.2
0
Carbon (C), % 0
0.35 to 0.55
Chromium (Cr), % 0 to 0.1
27 to 30
Copper (Cu), % 3.3 to 4.5
0
Iron (Fe), % 0 to 0.7
9.4 to 20.7
Lead (Pb), % 0.8 to 1.5
0
Magnesium (Mg), % 0.5 to 1.3
0
Manganese (Mn), % 0.2 to 1.0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
47 to 50
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.8
1.0 to 2.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
4.0 to 6.0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.3
0