MakeItFrom.com
Menu (ESC)

2030 Aluminum vs. EN AC-44000 Aluminum

Both 2030 aluminum and EN AC-44000 aluminum are aluminum alloys. They have 90% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 2030 aluminum and the bottom bar is EN AC-44000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
71
Elongation at Break, % 5.6 to 8.0
7.3
Fatigue Strength, MPa 91 to 110
64
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 370 to 420
180
Tensile Strength: Yield (Proof), MPa 240 to 270
86

Thermal Properties

Latent Heat of Fusion, J/g 390
560
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 640
590
Melting Onset (Solidus), °C 510
590
Specific Heat Capacity, J/kg-K 870
910
Thermal Conductivity, W/m-K 130
140
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
36
Electrical Conductivity: Equal Weight (Specific), % IACS 99
130

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 3.1
2.5
Embodied Carbon, kg CO2/kg material 8.0
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1140
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 26
11
Resilience: Unit (Modulus of Resilience), kJ/m3 390 to 530
51
Stiffness to Weight: Axial, points 13
16
Stiffness to Weight: Bending, points 45
55
Strength to Weight: Axial, points 33 to 38
20
Strength to Weight: Bending, points 37 to 40
28
Thermal Diffusivity, mm2/s 50
61
Thermal Shock Resistance, points 16 to 19
8.4

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 88.9 to 95.2
87.1 to 90
Bismuth (Bi), % 0 to 0.2
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.3 to 4.5
0 to 0.050
Iron (Fe), % 0 to 0.7
0 to 0.19
Lead (Pb), % 0.8 to 1.5
0
Magnesium (Mg), % 0.5 to 1.3
0 to 0.45
Manganese (Mn), % 0.2 to 1.0
0 to 0.1
Silicon (Si), % 0 to 0.8
10 to 11.8
Titanium (Ti), % 0 to 0.2
0 to 0.15
Zinc (Zn), % 0 to 0.5
0 to 0.070
Residuals, % 0 to 0.3
0 to 0.1