MakeItFrom.com
Menu (ESC)

2030 Aluminum vs. Titanium 6-7

2030 aluminum belongs to the aluminum alloys classification, while titanium 6-7 belongs to the titanium alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is 2030 aluminum and the bottom bar is titanium 6-7.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
120
Elongation at Break, % 5.6 to 8.0
11
Fatigue Strength, MPa 91 to 110
530
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
45
Shear Strength, MPa 220 to 250
610
Tensile Strength: Ultimate (UTS), MPa 370 to 420
1020
Tensile Strength: Yield (Proof), MPa 240 to 270
900

Thermal Properties

Latent Heat of Fusion, J/g 390
410
Maximum Temperature: Mechanical, °C 190
300
Melting Completion (Liquidus), °C 640
1700
Melting Onset (Solidus), °C 510
1650
Specific Heat Capacity, J/kg-K 870
520
Thermal Expansion, µm/m-K 23
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 10
75
Density, g/cm3 3.1
5.1
Embodied Carbon, kg CO2/kg material 8.0
34
Embodied Energy, MJ/kg 150
540
Embodied Water, L/kg 1140
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 26
110
Resilience: Unit (Modulus of Resilience), kJ/m3 390 to 530
3460
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
32
Strength to Weight: Axial, points 33 to 38
56
Strength to Weight: Bending, points 37 to 40
44
Thermal Shock Resistance, points 16 to 19
66

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 88.9 to 95.2
5.5 to 6.5
Bismuth (Bi), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.3 to 4.5
0
Hydrogen (H), % 0
0 to 0.0090
Iron (Fe), % 0 to 0.7
0 to 0.25
Lead (Pb), % 0.8 to 1.5
0
Magnesium (Mg), % 0.5 to 1.3
0
Manganese (Mn), % 0.2 to 1.0
0
Molybdenum (Mo), % 0
6.5 to 7.5
Niobium (Nb), % 0
6.5 to 7.5
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Silicon (Si), % 0 to 0.8
0
Tantalum (Ta), % 0
0 to 0.5
Titanium (Ti), % 0 to 0.2
84.9 to 88
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.3
0