MakeItFrom.com
Menu (ESC)

2030 Aluminum vs. C86500 Bronze

2030 aluminum belongs to the aluminum alloys classification, while C86500 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2030 aluminum and the bottom bar is C86500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 5.6 to 8.0
25
Poisson's Ratio 0.33
0.3
Shear Modulus, GPa 26
40
Tensile Strength: Ultimate (UTS), MPa 370 to 420
530
Tensile Strength: Yield (Proof), MPa 240 to 270
190

Thermal Properties

Latent Heat of Fusion, J/g 390
170
Maximum Temperature: Mechanical, °C 190
120
Melting Completion (Liquidus), °C 640
880
Melting Onset (Solidus), °C 510
860
Specific Heat Capacity, J/kg-K 870
390
Thermal Conductivity, W/m-K 130
86
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
22
Electrical Conductivity: Equal Weight (Specific), % IACS 99
25

Otherwise Unclassified Properties

Base Metal Price, % relative 10
23
Density, g/cm3 3.1
7.9
Embodied Carbon, kg CO2/kg material 8.0
2.8
Embodied Energy, MJ/kg 150
48
Embodied Water, L/kg 1140
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 26
110
Resilience: Unit (Modulus of Resilience), kJ/m3 390 to 530
180
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 45
20
Strength to Weight: Axial, points 33 to 38
19
Strength to Weight: Bending, points 37 to 40
18
Thermal Diffusivity, mm2/s 50
28
Thermal Shock Resistance, points 16 to 19
17

Alloy Composition

Aluminum (Al), % 88.9 to 95.2
0.5 to 1.5
Bismuth (Bi), % 0 to 0.2
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.3 to 4.5
55 to 60
Iron (Fe), % 0 to 0.7
0.4 to 2.0
Lead (Pb), % 0.8 to 1.5
0 to 0.4
Magnesium (Mg), % 0.5 to 1.3
0
Manganese (Mn), % 0.2 to 1.0
0.1 to 1.5
Nickel (Ni), % 0
0 to 1.0
Silicon (Si), % 0 to 0.8
0
Tin (Sn), % 0
0 to 1.0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
36 to 42
Residuals, % 0
0 to 1.0