MakeItFrom.com
Menu (ESC)

2030 Aluminum vs. C93500 Bronze

2030 aluminum belongs to the aluminum alloys classification, while C93500 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2030 aluminum and the bottom bar is C93500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
100
Elongation at Break, % 5.6 to 8.0
15
Poisson's Ratio 0.33
0.35
Shear Modulus, GPa 26
38
Tensile Strength: Ultimate (UTS), MPa 370 to 420
220
Tensile Strength: Yield (Proof), MPa 240 to 270
110

Thermal Properties

Latent Heat of Fusion, J/g 390
180
Maximum Temperature: Mechanical, °C 190
160
Melting Completion (Liquidus), °C 640
1000
Melting Onset (Solidus), °C 510
850
Specific Heat Capacity, J/kg-K 870
360
Thermal Conductivity, W/m-K 130
70
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
15
Electrical Conductivity: Equal Weight (Specific), % IACS 99
15

Otherwise Unclassified Properties

Base Metal Price, % relative 10
31
Density, g/cm3 3.1
9.0
Embodied Carbon, kg CO2/kg material 8.0
3.0
Embodied Energy, MJ/kg 150
49
Embodied Water, L/kg 1140
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 26
28
Resilience: Unit (Modulus of Resilience), kJ/m3 390 to 530
59
Stiffness to Weight: Axial, points 13
6.3
Stiffness to Weight: Bending, points 45
17
Strength to Weight: Axial, points 33 to 38
6.9
Strength to Weight: Bending, points 37 to 40
9.1
Thermal Diffusivity, mm2/s 50
22
Thermal Shock Resistance, points 16 to 19
8.5

Alloy Composition

Aluminum (Al), % 88.9 to 95.2
0 to 0.0050
Antimony (Sb), % 0
0 to 0.3
Bismuth (Bi), % 0 to 0.2
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.3 to 4.5
83 to 86
Iron (Fe), % 0 to 0.7
0 to 0.2
Lead (Pb), % 0.8 to 1.5
8.0 to 10
Magnesium (Mg), % 0.5 to 1.3
0
Manganese (Mn), % 0.2 to 1.0
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0 to 0.8
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
4.3 to 6.0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0 to 2.0
Residuals, % 0
0 to 1.0