MakeItFrom.com
Menu (ESC)

2036 Aluminum vs. ACI-ASTM CG6MMN Steel

2036 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CG6MMN steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2036 aluminum and the bottom bar is ACI-ASTM CG6MMN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 24
34
Fatigue Strength, MPa 130
260
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
79
Tensile Strength: Ultimate (UTS), MPa 340
670
Tensile Strength: Yield (Proof), MPa 200
320

Thermal Properties

Latent Heat of Fusion, J/g 390
300
Maximum Temperature: Mechanical, °C 190
1080
Melting Completion (Liquidus), °C 650
1420
Melting Onset (Solidus), °C 560
1380
Specific Heat Capacity, J/kg-K 890
480
Thermal Expansion, µm/m-K 23
17

Otherwise Unclassified Properties

Base Metal Price, % relative 10
22
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 8.1
4.8
Embodied Energy, MJ/kg 150
68
Embodied Water, L/kg 1160
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 70
190
Resilience: Unit (Modulus of Resilience), kJ/m3 270
260
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 48
25
Strength to Weight: Axial, points 33
24
Strength to Weight: Bending, points 38
22
Thermal Shock Resistance, points 15
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94.4 to 97.4
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0 to 0.1
20.5 to 23.5
Copper (Cu), % 2.2 to 3.0
0
Iron (Fe), % 0 to 0.5
51.9 to 62.1
Magnesium (Mg), % 0.3 to 0.6
0
Manganese (Mn), % 0.1 to 0.4
4.0 to 6.0
Molybdenum (Mo), % 0
1.5 to 3.0
Nickel (Ni), % 0
11.5 to 13.5
Niobium (Nb), % 0
0.1 to 0.3
Nitrogen (N), % 0
0.2 to 0.4
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Vanadium (V), % 0
0.1 to 0.3
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0