MakeItFrom.com
Menu (ESC)

2036 Aluminum vs. AWS BNi-9

2036 aluminum belongs to the aluminum alloys classification, while AWS BNi-9 belongs to the nickel alloys. There are 19 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2036 aluminum and the bottom bar is AWS BNi-9.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Poisson's Ratio 0.33
0.3
Shear Modulus, GPa 26
72
Tensile Strength: Ultimate (UTS), MPa 340
580

Thermal Properties

Latent Heat of Fusion, J/g 390
300
Melting Completion (Liquidus), °C 650
1060
Melting Onset (Solidus), °C 560
1060
Specific Heat Capacity, J/kg-K 890
480
Thermal Expansion, µm/m-K 23
12

Otherwise Unclassified Properties

Base Metal Price, % relative 10
60
Density, g/cm3 2.9
8.4
Embodied Carbon, kg CO2/kg material 8.1
9.3
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1160
260

Common Calculations

Stiffness to Weight: Axial, points 13
12
Stiffness to Weight: Bending, points 48
23
Strength to Weight: Axial, points 33
19
Strength to Weight: Bending, points 38
18
Thermal Shock Resistance, points 15
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94.4 to 97.4
0 to 0.050
Boron (B), % 0
3.3 to 4.0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0 to 0.1
13.5 to 16.5
Cobalt (Co), % 0
0 to 0.1
Copper (Cu), % 2.2 to 3.0
0
Iron (Fe), % 0 to 0.5
0 to 1.5
Magnesium (Mg), % 0.3 to 0.6
0
Manganese (Mn), % 0.1 to 0.4
0
Nickel (Ni), % 0
77.1 to 83.3
Phosphorus (P), % 0
0 to 0.020
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.15
0 to 0.050
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0
0 to 0.050
Residuals, % 0 to 0.15
0 to 0.5