MakeItFrom.com
Menu (ESC)

2036 Aluminum vs. AWS E330H

2036 aluminum belongs to the aluminum alloys classification, while AWS E330H belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2036 aluminum and the bottom bar is AWS E330H.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 24
11
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 340
690

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Melting Completion (Liquidus), °C 650
1400
Melting Onset (Solidus), °C 560
1350
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 160
12
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 130
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 10
30
Density, g/cm3 2.9
8.1
Embodied Carbon, kg CO2/kg material 8.1
5.4
Embodied Energy, MJ/kg 150
76
Embodied Water, L/kg 1160
180

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 48
24
Strength to Weight: Axial, points 33
24
Strength to Weight: Bending, points 38
22
Thermal Diffusivity, mm2/s 62
3.2
Thermal Shock Resistance, points 15
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94.4 to 97.4
0
Carbon (C), % 0
0.35 to 0.45
Chromium (Cr), % 0 to 0.1
14 to 17
Copper (Cu), % 2.2 to 3.0
0 to 0.75
Iron (Fe), % 0 to 0.5
40.5 to 51.7
Magnesium (Mg), % 0.3 to 0.6
0
Manganese (Mn), % 0.1 to 0.4
1.0 to 2.5
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0
33 to 37
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0