MakeItFrom.com
Menu (ESC)

2036 Aluminum vs. EN AC-43200 Aluminum

Both 2036 aluminum and EN AC-43200 aluminum are aluminum alloys. They have 90% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 2036 aluminum and the bottom bar is EN AC-43200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
72
Elongation at Break, % 24
1.1
Fatigue Strength, MPa 130
67
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 340
190 to 260
Tensile Strength: Yield (Proof), MPa 200
97 to 220

Thermal Properties

Latent Heat of Fusion, J/g 390
540
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 650
600
Melting Onset (Solidus), °C 560
590
Specific Heat Capacity, J/kg-K 890
900
Thermal Conductivity, W/m-K 160
140
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
34
Electrical Conductivity: Equal Weight (Specific), % IACS 130
120

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 2.9
2.6
Embodied Carbon, kg CO2/kg material 8.1
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1160
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 70
1.8 to 2.7
Resilience: Unit (Modulus of Resilience), kJ/m3 270
66 to 330
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 48
54
Strength to Weight: Axial, points 33
20 to 28
Strength to Weight: Bending, points 38
28 to 35
Thermal Diffusivity, mm2/s 62
59
Thermal Shock Resistance, points 15
8.8 to 12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94.4 to 97.4
86.1 to 90.8
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 2.2 to 3.0
0 to 0.35
Iron (Fe), % 0 to 0.5
0 to 0.65
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0.3 to 0.6
0.2 to 0.45
Manganese (Mn), % 0.1 to 0.4
0 to 0.55
Nickel (Ni), % 0
0 to 0.15
Silicon (Si), % 0 to 0.5
9.0 to 11
Titanium (Ti), % 0 to 0.15
0 to 0.2
Zinc (Zn), % 0 to 0.25
0 to 0.35
Residuals, % 0 to 0.15
0 to 0.15