MakeItFrom.com
Menu (ESC)

2036 Aluminum vs. EN AC-46200 Aluminum

Both 2036 aluminum and EN AC-46200 aluminum are aluminum alloys. They have a moderately high 90% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 2036 aluminum and the bottom bar is EN AC-46200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
73
Elongation at Break, % 24
1.1
Fatigue Strength, MPa 130
87
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 340
210
Tensile Strength: Yield (Proof), MPa 200
130

Thermal Properties

Latent Heat of Fusion, J/g 390
510
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 650
620
Melting Onset (Solidus), °C 560
540
Specific Heat Capacity, J/kg-K 890
880
Thermal Conductivity, W/m-K 160
110
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
28
Electrical Conductivity: Equal Weight (Specific), % IACS 130
88

Otherwise Unclassified Properties

Base Metal Price, % relative 10
10
Density, g/cm3 2.9
2.8
Embodied Carbon, kg CO2/kg material 8.1
7.7
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1160
1060

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 70
2.0
Resilience: Unit (Modulus of Resilience), kJ/m3 270
110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 48
50
Strength to Weight: Axial, points 33
21
Strength to Weight: Bending, points 38
28
Thermal Diffusivity, mm2/s 62
44
Thermal Shock Resistance, points 15
9.5

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94.4 to 97.4
82.6 to 90.3
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 2.2 to 3.0
2.0 to 3.5
Iron (Fe), % 0 to 0.5
0 to 0.8
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 0.3 to 0.6
0.050 to 0.55
Manganese (Mn), % 0.1 to 0.4
0.15 to 0.65
Nickel (Ni), % 0
0 to 0.35
Silicon (Si), % 0 to 0.5
7.5 to 9.5
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.15
0 to 0.25
Zinc (Zn), % 0 to 0.25
0 to 1.2
Residuals, % 0 to 0.15
0 to 0.25