MakeItFrom.com
Menu (ESC)

2036 Aluminum vs. CC380H Copper-nickel

2036 aluminum belongs to the aluminum alloys classification, while CC380H copper-nickel belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2036 aluminum and the bottom bar is CC380H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
120
Elongation at Break, % 24
26
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
47
Tensile Strength: Ultimate (UTS), MPa 340
310
Tensile Strength: Yield (Proof), MPa 200
120

Thermal Properties

Latent Heat of Fusion, J/g 390
220
Maximum Temperature: Mechanical, °C 190
220
Melting Completion (Liquidus), °C 650
1130
Melting Onset (Solidus), °C 560
1080
Specific Heat Capacity, J/kg-K 890
390
Thermal Conductivity, W/m-K 160
46
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
11
Electrical Conductivity: Equal Weight (Specific), % IACS 130
11

Otherwise Unclassified Properties

Base Metal Price, % relative 10
36
Density, g/cm3 2.9
8.9
Embodied Carbon, kg CO2/kg material 8.1
3.8
Embodied Energy, MJ/kg 150
58
Embodied Water, L/kg 1160
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 70
65
Resilience: Unit (Modulus of Resilience), kJ/m3 270
59
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 48
19
Strength to Weight: Axial, points 33
9.8
Strength to Weight: Bending, points 38
12
Thermal Diffusivity, mm2/s 62
13
Thermal Shock Resistance, points 15
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94.4 to 97.4
0 to 0.010
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 2.2 to 3.0
84.5 to 89
Iron (Fe), % 0 to 0.5
1.0 to 1.8
Lead (Pb), % 0
0 to 0.030
Magnesium (Mg), % 0.3 to 0.6
0
Manganese (Mn), % 0.1 to 0.4
1.0 to 1.5
Nickel (Ni), % 0
9.0 to 11
Niobium (Nb), % 0
0 to 1.0
Silicon (Si), % 0 to 0.5
0 to 0.1
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0 to 0.5
Residuals, % 0 to 0.15
0