MakeItFrom.com
Menu (ESC)

2036 Aluminum vs. C14180 Copper

2036 aluminum belongs to the aluminum alloys classification, while C14180 copper belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2036 aluminum and the bottom bar is C14180 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
120
Elongation at Break, % 24
15
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
43
Tensile Strength: Ultimate (UTS), MPa 340
210
Tensile Strength: Yield (Proof), MPa 200
130

Thermal Properties

Latent Heat of Fusion, J/g 390
210
Maximum Temperature: Mechanical, °C 190
200
Melting Completion (Liquidus), °C 650
1080
Melting Onset (Solidus), °C 560
1080
Specific Heat Capacity, J/kg-K 890
390
Thermal Conductivity, W/m-K 160
370
Thermal Expansion, µm/m-K 23
17

Otherwise Unclassified Properties

Base Metal Price, % relative 10
31
Density, g/cm3 2.9
9.0
Embodied Carbon, kg CO2/kg material 8.1
2.6
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1160
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 70
28
Resilience: Unit (Modulus of Resilience), kJ/m3 270
69
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 48
18
Strength to Weight: Axial, points 33
6.5
Strength to Weight: Bending, points 38
8.8
Thermal Diffusivity, mm2/s 62
110
Thermal Shock Resistance, points 15
7.4

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94.4 to 97.4
0 to 0.010
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 2.2 to 3.0
99.9 to 100
Iron (Fe), % 0 to 0.5
0
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 0.3 to 0.6
0
Manganese (Mn), % 0.1 to 0.4
0
Phosphorus (P), % 0
0 to 0.075
Silicon (Si), % 0 to 0.5
0
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0