MakeItFrom.com
Menu (ESC)

2036 Aluminum vs. C19025 Copper

2036 aluminum belongs to the aluminum alloys classification, while C19025 copper belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2036 aluminum and the bottom bar is C19025 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
120
Elongation at Break, % 24
8.0 to 17
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
43
Shear Strength, MPa 210
300 to 360
Tensile Strength: Ultimate (UTS), MPa 340
480 to 620

Thermal Properties

Latent Heat of Fusion, J/g 390
210
Maximum Temperature: Mechanical, °C 190
200
Melting Completion (Liquidus), °C 650
1080
Melting Onset (Solidus), °C 560
1020
Specific Heat Capacity, J/kg-K 890
380
Thermal Conductivity, W/m-K 160
160
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
40
Electrical Conductivity: Equal Weight (Specific), % IACS 130
40

Otherwise Unclassified Properties

Base Metal Price, % relative 10
31
Density, g/cm3 2.9
8.9
Embodied Carbon, kg CO2/kg material 8.1
2.8
Embodied Energy, MJ/kg 150
44
Embodied Water, L/kg 1160
320

Common Calculations

Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 48
18
Strength to Weight: Axial, points 33
15 to 19
Strength to Weight: Bending, points 38
15 to 18
Thermal Diffusivity, mm2/s 62
47
Thermal Shock Resistance, points 15
17 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94.4 to 97.4
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 2.2 to 3.0
97.1 to 98.5
Iron (Fe), % 0 to 0.5
0
Magnesium (Mg), % 0.3 to 0.6
0
Manganese (Mn), % 0.1 to 0.4
0
Nickel (Ni), % 0
0.8 to 1.2
Phosphorus (P), % 0
0.030 to 0.070
Silicon (Si), % 0 to 0.5
0
Tin (Sn), % 0
0.7 to 1.1
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0 to 0.2
Residuals, % 0 to 0.15
0 to 0.3