MakeItFrom.com
Menu (ESC)

2036 Aluminum vs. C64700 Bronze

2036 aluminum belongs to the aluminum alloys classification, while C64700 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2036 aluminum and the bottom bar is C64700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
120
Elongation at Break, % 24
9.0
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
44
Shear Strength, MPa 210
390
Tensile Strength: Ultimate (UTS), MPa 340
660
Tensile Strength: Yield (Proof), MPa 200
560

Thermal Properties

Latent Heat of Fusion, J/g 390
220
Maximum Temperature: Mechanical, °C 190
200
Melting Completion (Liquidus), °C 650
1090
Melting Onset (Solidus), °C 560
1030
Specific Heat Capacity, J/kg-K 890
390
Thermal Conductivity, W/m-K 160
210
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
38
Electrical Conductivity: Equal Weight (Specific), % IACS 130
38

Otherwise Unclassified Properties

Base Metal Price, % relative 10
31
Density, g/cm3 2.9
8.9
Embodied Carbon, kg CO2/kg material 8.1
2.7
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1160
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 70
57
Resilience: Unit (Modulus of Resilience), kJ/m3 270
1370
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 48
18
Strength to Weight: Axial, points 33
21
Strength to Weight: Bending, points 38
19
Thermal Diffusivity, mm2/s 62
59
Thermal Shock Resistance, points 15
24

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94.4 to 97.4
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 2.2 to 3.0
95.8 to 98
Iron (Fe), % 0 to 0.5
0 to 0.1
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0.3 to 0.6
0
Manganese (Mn), % 0.1 to 0.4
0
Nickel (Ni), % 0
1.6 to 2.2
Silicon (Si), % 0 to 0.5
0.4 to 0.8
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0 to 0.5
Residuals, % 0 to 0.15
0 to 0.5