MakeItFrom.com
Menu (ESC)

2036 Aluminum vs. C70400 Copper-nickel

2036 aluminum belongs to the aluminum alloys classification, while C70400 copper-nickel belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2036 aluminum and the bottom bar is C70400 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
120
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
45
Tensile Strength: Ultimate (UTS), MPa 340
300 to 310
Tensile Strength: Yield (Proof), MPa 200
95 to 230

Thermal Properties

Latent Heat of Fusion, J/g 390
210
Maximum Temperature: Mechanical, °C 190
210
Melting Completion (Liquidus), °C 650
1120
Melting Onset (Solidus), °C 560
1060
Specific Heat Capacity, J/kg-K 890
390
Thermal Conductivity, W/m-K 160
64
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
14
Electrical Conductivity: Equal Weight (Specific), % IACS 130
14

Otherwise Unclassified Properties

Base Metal Price, % relative 10
32
Density, g/cm3 2.9
8.9
Embodied Carbon, kg CO2/kg material 8.1
3.0
Embodied Energy, MJ/kg 150
47
Embodied Water, L/kg 1160
300

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 270
38 to 220
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 48
19
Strength to Weight: Axial, points 33
9.3 to 9.8
Strength to Weight: Bending, points 38
11 to 12
Thermal Diffusivity, mm2/s 62
18
Thermal Shock Resistance, points 15
10 to 11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94.4 to 97.4
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 2.2 to 3.0
89.8 to 93.6
Iron (Fe), % 0 to 0.5
1.3 to 1.7
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0.3 to 0.6
0
Manganese (Mn), % 0.1 to 0.4
0.3 to 0.8
Nickel (Ni), % 0
4.8 to 6.2
Silicon (Si), % 0 to 0.5
0
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0 to 1.0
Residuals, % 0 to 0.15
0 to 0.5