MakeItFrom.com
Menu (ESC)

2036 Aluminum vs. C82400 Copper

2036 aluminum belongs to the aluminum alloys classification, while C82400 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2036 aluminum and the bottom bar is C82400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
120
Elongation at Break, % 24
1.0 to 20
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
45
Tensile Strength: Ultimate (UTS), MPa 340
500 to 1030
Tensile Strength: Yield (Proof), MPa 200
260 to 970

Thermal Properties

Latent Heat of Fusion, J/g 390
230
Maximum Temperature: Mechanical, °C 190
270
Melting Completion (Liquidus), °C 650
1000
Melting Onset (Solidus), °C 560
900
Specific Heat Capacity, J/kg-K 890
380
Thermal Conductivity, W/m-K 160
130
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
25
Electrical Conductivity: Equal Weight (Specific), % IACS 130
26

Otherwise Unclassified Properties

Density, g/cm3 2.9
8.8
Embodied Carbon, kg CO2/kg material 8.1
8.9
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1160
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 70
10 to 83
Resilience: Unit (Modulus of Resilience), kJ/m3 270
270 to 3870
Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 48
19
Strength to Weight: Axial, points 33
16 to 33
Strength to Weight: Bending, points 38
16 to 26
Thermal Diffusivity, mm2/s 62
39
Thermal Shock Resistance, points 15
17 to 36

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94.4 to 97.4
0 to 0.15
Beryllium (Be), % 0
1.6 to 1.9
Chromium (Cr), % 0 to 0.1
0 to 0.1
Cobalt (Co), % 0
0.2 to 0.65
Copper (Cu), % 2.2 to 3.0
96 to 98.2
Iron (Fe), % 0 to 0.5
0 to 0.2
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 0.3 to 0.6
0
Manganese (Mn), % 0.1 to 0.4
0
Nickel (Ni), % 0
0 to 0.2
Silicon (Si), % 0 to 0.5
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0 to 0.15
0 to 0.12
Zinc (Zn), % 0 to 0.25
0 to 0.1
Residuals, % 0 to 0.15
0 to 0.5