MakeItFrom.com
Menu (ESC)

2036 Aluminum vs. C92200 Bronze

2036 aluminum belongs to the aluminum alloys classification, while C92200 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2036 aluminum and the bottom bar is C92200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 24
25
Fatigue Strength, MPa 130
76
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
41
Tensile Strength: Ultimate (UTS), MPa 340
280
Tensile Strength: Yield (Proof), MPa 200
140

Thermal Properties

Latent Heat of Fusion, J/g 390
190
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 650
990
Melting Onset (Solidus), °C 560
830
Specific Heat Capacity, J/kg-K 890
370
Thermal Conductivity, W/m-K 160
70
Thermal Expansion, µm/m-K 23
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
14
Electrical Conductivity: Equal Weight (Specific), % IACS 130
14

Otherwise Unclassified Properties

Base Metal Price, % relative 10
32
Density, g/cm3 2.9
8.7
Embodied Carbon, kg CO2/kg material 8.1
3.2
Embodied Energy, MJ/kg 150
52
Embodied Water, L/kg 1160
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 70
58
Resilience: Unit (Modulus of Resilience), kJ/m3 270
87
Stiffness to Weight: Axial, points 13
6.9
Stiffness to Weight: Bending, points 48
18
Strength to Weight: Axial, points 33
8.9
Strength to Weight: Bending, points 38
11
Thermal Diffusivity, mm2/s 62
21
Thermal Shock Resistance, points 15
9.9

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94.4 to 97.4
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 2.2 to 3.0
86 to 90
Iron (Fe), % 0 to 0.5
0 to 0.25
Lead (Pb), % 0
1.0 to 2.0
Magnesium (Mg), % 0.3 to 0.6
0
Manganese (Mn), % 0.1 to 0.4
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0 to 0.5
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
5.5 to 6.5
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
3.0 to 5.0
Residuals, % 0 to 0.15
0 to 0.7