MakeItFrom.com
Menu (ESC)

2036 Aluminum vs. C96400 Copper-nickel

2036 aluminum belongs to the aluminum alloys classification, while C96400 copper-nickel belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2036 aluminum and the bottom bar is C96400 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
140
Elongation at Break, % 24
25
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
51
Tensile Strength: Ultimate (UTS), MPa 340
490
Tensile Strength: Yield (Proof), MPa 200
260

Thermal Properties

Latent Heat of Fusion, J/g 390
240
Maximum Temperature: Mechanical, °C 190
260
Melting Completion (Liquidus), °C 650
1240
Melting Onset (Solidus), °C 560
1170
Specific Heat Capacity, J/kg-K 890
400
Thermal Conductivity, W/m-K 160
28
Thermal Expansion, µm/m-K 23
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
5.0
Electrical Conductivity: Equal Weight (Specific), % IACS 130
5.1

Otherwise Unclassified Properties

Base Metal Price, % relative 10
45
Density, g/cm3 2.9
8.9
Embodied Carbon, kg CO2/kg material 8.1
5.9
Embodied Energy, MJ/kg 150
87
Embodied Water, L/kg 1160
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 70
100
Resilience: Unit (Modulus of Resilience), kJ/m3 270
250
Stiffness to Weight: Axial, points 13
8.6
Stiffness to Weight: Bending, points 48
19
Strength to Weight: Axial, points 33
15
Strength to Weight: Bending, points 38
16
Thermal Diffusivity, mm2/s 62
7.8
Thermal Shock Resistance, points 15
17

Alloy Composition

Aluminum (Al), % 94.4 to 97.4
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 2.2 to 3.0
62.3 to 71.3
Iron (Fe), % 0 to 0.5
0.25 to 1.5
Lead (Pb), % 0
0 to 0.010
Magnesium (Mg), % 0.3 to 0.6
0
Manganese (Mn), % 0.1 to 0.4
0 to 1.5
Nickel (Ni), % 0
28 to 32
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0 to 0.5