MakeItFrom.com
Menu (ESC)

2036 Aluminum vs. N06219 Nickel

2036 aluminum belongs to the aluminum alloys classification, while N06219 nickel belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2036 aluminum and the bottom bar is N06219 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 24
48
Fatigue Strength, MPa 130
270
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
79
Shear Strength, MPa 210
520
Tensile Strength: Ultimate (UTS), MPa 340
730
Tensile Strength: Yield (Proof), MPa 200
300

Thermal Properties

Latent Heat of Fusion, J/g 390
330
Maximum Temperature: Mechanical, °C 190
980
Melting Completion (Liquidus), °C 650
1430
Melting Onset (Solidus), °C 560
1380
Specific Heat Capacity, J/kg-K 890
450
Thermal Conductivity, W/m-K 160
10
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 130
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 10
60
Density, g/cm3 2.9
8.5
Embodied Carbon, kg CO2/kg material 8.1
11
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1160
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 70
280
Resilience: Unit (Modulus of Resilience), kJ/m3 270
230
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 48
23
Strength to Weight: Axial, points 33
24
Strength to Weight: Bending, points 38
21
Thermal Diffusivity, mm2/s 62
2.7
Thermal Shock Resistance, points 15
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94.4 to 97.4
0 to 0.5
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0 to 0.1
18 to 22
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 2.2 to 3.0
0 to 0.5
Iron (Fe), % 0 to 0.5
2.0 to 4.0
Magnesium (Mg), % 0.3 to 0.6
0
Manganese (Mn), % 0.1 to 0.4
0 to 0.5
Molybdenum (Mo), % 0
7.0 to 9.0
Nickel (Ni), % 0
60.8 to 72.3
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.5
0.7 to 1.1
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.15
0 to 0.5
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0