MakeItFrom.com
Menu (ESC)

2036 Aluminum vs. N08028 Stainless Steel

2036 aluminum belongs to the aluminum alloys classification, while N08028 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2036 aluminum and the bottom bar is N08028 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 24
45
Fatigue Strength, MPa 130
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
80
Shear Strength, MPa 210
400
Tensile Strength: Ultimate (UTS), MPa 340
570
Tensile Strength: Yield (Proof), MPa 200
240

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 650
1420
Melting Onset (Solidus), °C 560
1370
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 160
12
Thermal Expansion, µm/m-K 23
16

Otherwise Unclassified Properties

Base Metal Price, % relative 10
37
Density, g/cm3 2.9
8.1
Embodied Carbon, kg CO2/kg material 8.1
6.4
Embodied Energy, MJ/kg 150
89
Embodied Water, L/kg 1160
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 70
210
Resilience: Unit (Modulus of Resilience), kJ/m3 270
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 48
24
Strength to Weight: Axial, points 33
19
Strength to Weight: Bending, points 38
19
Thermal Diffusivity, mm2/s 62
3.2
Thermal Shock Resistance, points 15
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94.4 to 97.4
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
26 to 28
Copper (Cu), % 2.2 to 3.0
0.6 to 1.4
Iron (Fe), % 0 to 0.5
29 to 40.4
Magnesium (Mg), % 0.3 to 0.6
0
Manganese (Mn), % 0.1 to 0.4
0 to 2.5
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0
30 to 34
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0