MakeItFrom.com
Menu (ESC)

204.0 Aluminum vs. 1070 Aluminum

Both 204.0 aluminum and 1070 aluminum are aluminum alloys. They have a moderately high 95% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 204.0 aluminum and the bottom bar is 1070 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
68
Elongation at Break, % 5.7 to 7.8
4.5 to 39
Fatigue Strength, MPa 63 to 77
22 to 49
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 230 to 340
73 to 140
Tensile Strength: Yield (Proof), MPa 180 to 220
17 to 120

Thermal Properties

Latent Heat of Fusion, J/g 390
400
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 650
640
Melting Onset (Solidus), °C 580
640
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 120
230
Thermal Expansion, µm/m-K 19
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29 to 34
61
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 100
200

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.0
2.7
Embodied Carbon, kg CO2/kg material 8.0
8.3
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1150
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
4.8 to 21
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 350
2.1 to 110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
50
Strength to Weight: Axial, points 21 to 31
7.5 to 14
Strength to Weight: Bending, points 28 to 36
14 to 22
Thermal Diffusivity, mm2/s 46
94
Thermal Shock Resistance, points 12 to 18
3.3 to 6.1

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.4 to 95.5
99.7 to 100
Copper (Cu), % 4.2 to 5.0
0 to 0.040
Iron (Fe), % 0 to 0.35
0 to 0.25
Magnesium (Mg), % 0.15 to 0.35
0 to 0.030
Manganese (Mn), % 0 to 0.1
0 to 0.030
Nickel (Ni), % 0 to 0.050
0
Silicon (Si), % 0 to 0.2
0 to 0.2
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0 to 0.030
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.1
0 to 0.040
Residuals, % 0 to 0.15
0 to 0.030