MakeItFrom.com
Menu (ESC)

204.0 Aluminum vs. EN AC-45000 Aluminum

Both 204.0 aluminum and EN AC-45000 aluminum are aluminum alloys. They have a moderately high 92% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 204.0 aluminum and the bottom bar is EN AC-45000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90 to 120
77
Elastic (Young's, Tensile) Modulus, GPa 71
73
Elongation at Break, % 5.7 to 7.8
1.1
Fatigue Strength, MPa 63 to 77
75
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 230 to 340
180
Tensile Strength: Yield (Proof), MPa 180 to 220
110

Thermal Properties

Latent Heat of Fusion, J/g 390
470
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 650
640
Melting Onset (Solidus), °C 580
520
Specific Heat Capacity, J/kg-K 880
870
Thermal Conductivity, W/m-K 120
120
Thermal Expansion, µm/m-K 19
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29 to 34
27
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 100
81

Otherwise Unclassified Properties

Base Metal Price, % relative 11
11
Density, g/cm3 3.0
3.0
Embodied Carbon, kg CO2/kg material 8.0
7.7
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1150
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
1.7
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 350
80
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
47
Strength to Weight: Axial, points 21 to 31
17
Strength to Weight: Bending, points 28 to 36
24
Thermal Diffusivity, mm2/s 46
47
Thermal Shock Resistance, points 12 to 18
8.0

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.4 to 95.5
82.2 to 91.8
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 4.2 to 5.0
3.0 to 5.0
Iron (Fe), % 0 to 0.35
0 to 1.0
Lead (Pb), % 0
0 to 0.3
Magnesium (Mg), % 0.15 to 0.35
0 to 0.55
Manganese (Mn), % 0 to 0.1
0.2 to 0.65
Nickel (Ni), % 0 to 0.050
0 to 0.45
Silicon (Si), % 0 to 0.2
5.0 to 7.0
Tin (Sn), % 0 to 0.050
0 to 0.15
Titanium (Ti), % 0.15 to 0.3
0 to 0.25
Zinc (Zn), % 0 to 0.1
0 to 2.0
Residuals, % 0 to 0.15
0 to 0.35