MakeItFrom.com
Menu (ESC)

204.0 Aluminum vs. N06060 Nickel

204.0 aluminum belongs to the aluminum alloys classification, while N06060 nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 204.0 aluminum and the bottom bar is N06060 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
210
Elongation at Break, % 5.7 to 7.8
45
Fatigue Strength, MPa 63 to 77
230
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
82
Tensile Strength: Ultimate (UTS), MPa 230 to 340
700
Tensile Strength: Yield (Proof), MPa 180 to 220
270

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 650
1510
Melting Onset (Solidus), °C 580
1450
Specific Heat Capacity, J/kg-K 880
430
Thermal Expansion, µm/m-K 19
12

Otherwise Unclassified Properties

Base Metal Price, % relative 11
65
Density, g/cm3 3.0
8.7
Embodied Carbon, kg CO2/kg material 8.0
12
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1150
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
250
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 350
180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
23
Strength to Weight: Axial, points 21 to 31
22
Strength to Weight: Bending, points 28 to 36
20
Thermal Shock Resistance, points 12 to 18
19

Alloy Composition

Aluminum (Al), % 93.4 to 95.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19 to 22
Copper (Cu), % 4.2 to 5.0
0.25 to 1.3
Iron (Fe), % 0 to 0.35
0 to 14
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0 to 0.1
0 to 1.5
Molybdenum (Mo), % 0
12 to 14
Nickel (Ni), % 0 to 0.050
54 to 60
Niobium (Nb), % 0
0.5 to 1.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.2
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0
Tungsten (W), % 0
0.25 to 1.3
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0