MakeItFrom.com
Menu (ESC)

206.0 Aluminum vs. 6151 Aluminum

Both 206.0 aluminum and 6151 aluminum are aluminum alloys. They have a very high 95% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 206.0 aluminum and the bottom bar is 6151 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
69
Elongation at Break, % 8.4 to 12
1.1 to 5.7
Fatigue Strength, MPa 88 to 210
80 to 100
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 260
190 to 200
Tensile Strength: Ultimate (UTS), MPa 330 to 440
330 to 340
Tensile Strength: Yield (Proof), MPa 190 to 350
270 to 280

Thermal Properties

Latent Heat of Fusion, J/g 390
410
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 650
650
Melting Onset (Solidus), °C 570
590
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 120
170
Thermal Expansion, µm/m-K 19
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
45
Electrical Conductivity: Equal Weight (Specific), % IACS 99
150

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.0
2.7
Embodied Carbon, kg CO2/kg material 8.0
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 49
3.5 to 18
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 840
520 to 580
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
50
Strength to Weight: Axial, points 30 to 40
34
Strength to Weight: Bending, points 35 to 42
39
Thermal Diffusivity, mm2/s 46
70
Thermal Shock Resistance, points 17 to 23
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.3 to 95.3
95.6 to 98.8
Chromium (Cr), % 0
0.15 to 0.35
Copper (Cu), % 4.2 to 5.0
0 to 0.35
Iron (Fe), % 0 to 0.15
0 to 1.0
Magnesium (Mg), % 0.15 to 0.35
0.45 to 0.8
Manganese (Mn), % 0.2 to 0.5
0 to 0.2
Nickel (Ni), % 0 to 0.050
0
Silicon (Si), % 0 to 0.1
0.6 to 1.2
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0 to 0.15
Zinc (Zn), % 0 to 0.1
0 to 0.25
Residuals, % 0 to 0.15
0 to 0.15

Comparable Variants