MakeItFrom.com
Menu (ESC)

206.0 Aluminum vs. 8090 Aluminum

Both 206.0 aluminum and 8090 aluminum are aluminum alloys. They have a very high 96% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is 206.0 aluminum and the bottom bar is 8090 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
67
Elongation at Break, % 8.4 to 12
3.5 to 13
Fatigue Strength, MPa 88 to 210
91 to 140
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
25
Tensile Strength: Ultimate (UTS), MPa 330 to 440
340 to 490
Tensile Strength: Yield (Proof), MPa 190 to 350
210 to 420

Thermal Properties

Latent Heat of Fusion, J/g 390
400
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 650
660
Melting Onset (Solidus), °C 570
600
Specific Heat Capacity, J/kg-K 880
960
Thermal Conductivity, W/m-K 120
95 to 160
Thermal Expansion, µm/m-K 19
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
20
Electrical Conductivity: Equal Weight (Specific), % IACS 99
66

Otherwise Unclassified Properties

Base Metal Price, % relative 11
18
Density, g/cm3 3.0
2.7
Embodied Carbon, kg CO2/kg material 8.0
8.6
Embodied Energy, MJ/kg 150
170
Embodied Water, L/kg 1150
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 49
16 to 41
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 840
340 to 1330
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
50
Strength to Weight: Axial, points 30 to 40
34 to 49
Strength to Weight: Bending, points 35 to 42
39 to 50
Thermal Diffusivity, mm2/s 46
36 to 60
Thermal Shock Resistance, points 17 to 23
15 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.3 to 95.3
93 to 98.4
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 4.2 to 5.0
1.0 to 1.6
Iron (Fe), % 0 to 0.15
0 to 0.3
Lithium (Li), % 0
2.2 to 2.7
Magnesium (Mg), % 0.15 to 0.35
0.6 to 1.3
Manganese (Mn), % 0.2 to 0.5
0 to 0.1
Nickel (Ni), % 0 to 0.050
0
Silicon (Si), % 0 to 0.1
0 to 0.2
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0 to 0.1
Zinc (Zn), % 0 to 0.1
0 to 0.25
Zirconium (Zr), % 0
0.040 to 0.16
Residuals, % 0 to 0.15
0 to 0.15