MakeItFrom.com
Menu (ESC)

206.0 Aluminum vs. EN 1.4910 Stainless Steel

206.0 aluminum belongs to the aluminum alloys classification, while EN 1.4910 stainless steel belongs to the iron alloys. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 206.0 aluminum and the bottom bar is EN 1.4910 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 95 to 110
200
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 8.4 to 12
41
Fatigue Strength, MPa 88 to 210
250
Impact Strength: V-Notched Charpy, J 9.5
98
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
78
Shear Strength, MPa 260
450
Tensile Strength: Ultimate (UTS), MPa 330 to 440
650
Tensile Strength: Yield (Proof), MPa 190 to 350
290

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Mechanical, °C 170
950
Melting Completion (Liquidus), °C 650
1440
Melting Onset (Solidus), °C 570
1400
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 120
16
Thermal Expansion, µm/m-K 19
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 99
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 11
20
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.0
3.9
Embodied Energy, MJ/kg 150
54
Embodied Water, L/kg 1150
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 49
220
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 840
210
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 30 to 40
23
Strength to Weight: Bending, points 35 to 42
21
Thermal Diffusivity, mm2/s 46
4.3
Thermal Shock Resistance, points 17 to 23
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.3 to 95.3
0
Boron (B), % 0
0.0015 to 0.0050
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 4.2 to 5.0
0
Iron (Fe), % 0 to 0.15
62 to 69.9
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0.2 to 0.5
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 0.050
12 to 14
Nitrogen (N), % 0
0.1 to 0.18
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.1
0 to 0.75
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0