MakeItFrom.com
Menu (ESC)

206.0 Aluminum vs. EN AC-51400 Aluminum

Both 206.0 aluminum and EN AC-51400 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 206.0 aluminum and the bottom bar is EN AC-51400 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 95 to 110
71
Elastic (Young's, Tensile) Modulus, GPa 71
67
Elongation at Break, % 8.4 to 12
3.4
Fatigue Strength, MPa 88 to 210
85
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
25
Tensile Strength: Ultimate (UTS), MPa 330 to 440
190
Tensile Strength: Yield (Proof), MPa 190 to 350
120

Thermal Properties

Latent Heat of Fusion, J/g 390
400
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 650
640
Melting Onset (Solidus), °C 570
600
Specific Heat Capacity, J/kg-K 880
910
Thermal Conductivity, W/m-K 120
110
Thermal Expansion, µm/m-K 19
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
31
Electrical Conductivity: Equal Weight (Specific), % IACS 99
110

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.0
2.7
Embodied Carbon, kg CO2/kg material 8.0
9.1
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 49
5.6
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 840
110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
51
Strength to Weight: Axial, points 30 to 40
20
Strength to Weight: Bending, points 35 to 42
28
Thermal Diffusivity, mm2/s 46
46
Thermal Shock Resistance, points 17 to 23
8.6

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.3 to 95.3
90.5 to 95.5
Copper (Cu), % 4.2 to 5.0
0 to 0.050
Iron (Fe), % 0 to 0.15
0 to 0.55
Magnesium (Mg), % 0.15 to 0.35
4.5 to 6.5
Manganese (Mn), % 0.2 to 0.5
0 to 0.45
Nickel (Ni), % 0 to 0.050
0
Silicon (Si), % 0 to 0.1
0 to 1.5
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0 to 0.2
Zinc (Zn), % 0 to 0.1
0 to 0.1
Residuals, % 0 to 0.15
0 to 0.15