MakeItFrom.com
Menu (ESC)

206.0 Aluminum vs. Nickel 80A

206.0 aluminum belongs to the aluminum alloys classification, while nickel 80A belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 206.0 aluminum and the bottom bar is nickel 80A.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 8.4 to 12
22
Fatigue Strength, MPa 88 to 210
430
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
74
Shear Strength, MPa 260
660
Tensile Strength: Ultimate (UTS), MPa 330 to 440
1040
Tensile Strength: Yield (Proof), MPa 190 to 350
710

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 650
1360
Melting Onset (Solidus), °C 570
1310
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 120
11
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 99
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 11
55
Density, g/cm3 3.0
8.3
Embodied Carbon, kg CO2/kg material 8.0
9.8
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1150
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 49
210
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 840
1300
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
23
Strength to Weight: Axial, points 30 to 40
35
Strength to Weight: Bending, points 35 to 42
27
Thermal Diffusivity, mm2/s 46
2.9
Thermal Shock Resistance, points 17 to 23
31

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.3 to 95.3
0.5 to 1.8
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 4.2 to 5.0
0
Iron (Fe), % 0 to 0.15
0 to 3.0
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0.2 to 0.5
0 to 1.0
Nickel (Ni), % 0 to 0.050
69.4 to 79.7
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
1.8 to 2.7
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0