MakeItFrom.com
Menu (ESC)

206.0 Aluminum vs. C70260 Copper

206.0 aluminum belongs to the aluminum alloys classification, while C70260 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 206.0 aluminum and the bottom bar is C70260 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
120
Elongation at Break, % 8.4 to 12
9.5 to 19
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
44
Shear Strength, MPa 260
320 to 450
Tensile Strength: Ultimate (UTS), MPa 330 to 440
520 to 760
Tensile Strength: Yield (Proof), MPa 190 to 350
410 to 650

Thermal Properties

Latent Heat of Fusion, J/g 390
220
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 650
1060
Melting Onset (Solidus), °C 570
1040
Specific Heat Capacity, J/kg-K 880
390
Thermal Conductivity, W/m-K 120
160
Thermal Expansion, µm/m-K 19
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
40 to 50
Electrical Conductivity: Equal Weight (Specific), % IACS 99
40 to 51

Otherwise Unclassified Properties

Base Metal Price, % relative 11
31
Density, g/cm3 3.0
8.9
Embodied Carbon, kg CO2/kg material 8.0
2.7
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1150
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 49
46 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 840
710 to 1810
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 46
18
Strength to Weight: Axial, points 30 to 40
16 to 24
Strength to Weight: Bending, points 35 to 42
16 to 21
Thermal Diffusivity, mm2/s 46
45
Thermal Shock Resistance, points 17 to 23
18 to 27

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.3 to 95.3
0
Copper (Cu), % 4.2 to 5.0
95.8 to 98.8
Iron (Fe), % 0 to 0.15
0
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0.2 to 0.5
0
Nickel (Ni), % 0 to 0.050
1.0 to 3.0
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.1
0.2 to 0.7
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0 to 0.5