MakeItFrom.com
Menu (ESC)

206.0 Aluminum vs. C72200 Copper-nickel

206.0 aluminum belongs to the aluminum alloys classification, while C72200 copper-nickel belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 206.0 aluminum and the bottom bar is C72200 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
48
Tensile Strength: Ultimate (UTS), MPa 330 to 440
350 to 580

Thermal Properties

Latent Heat of Fusion, J/g 390
220
Maximum Temperature: Mechanical, °C 170
230
Melting Completion (Liquidus), °C 650
1180
Melting Onset (Solidus), °C 570
1120
Specific Heat Capacity, J/kg-K 880
400
Thermal Conductivity, W/m-K 120
34
Thermal Expansion, µm/m-K 19
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
6.5
Electrical Conductivity: Equal Weight (Specific), % IACS 99
6.6

Otherwise Unclassified Properties

Base Metal Price, % relative 11
36
Density, g/cm3 3.0
8.9
Embodied Carbon, kg CO2/kg material 8.0
3.9
Embodied Energy, MJ/kg 150
59
Embodied Water, L/kg 1150
300

Common Calculations

Stiffness to Weight: Axial, points 13
8.0
Stiffness to Weight: Bending, points 46
19
Strength to Weight: Axial, points 30 to 40
11 to 18
Strength to Weight: Bending, points 35 to 42
12 to 17
Thermal Diffusivity, mm2/s 46
9.6
Thermal Shock Resistance, points 17 to 23
12 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.3 to 95.3
0
Chromium (Cr), % 0
0.3 to 0.7
Copper (Cu), % 4.2 to 5.0
78.1 to 84.2
Iron (Fe), % 0 to 0.15
0.5 to 1.0
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0.2 to 0.5
0 to 1.0
Nickel (Ni), % 0 to 0.050
15 to 18
Silicon (Si), % 0 to 0.1
0
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.1
0 to 1.0
Residuals, % 0 to 0.15
0 to 0.2