MakeItFrom.com
Menu (ESC)

206.0-T6 Aluminum vs. 772.0-T6 Aluminum

Both 206.0-T6 aluminum and 772.0-T6 aluminum are aluminum alloys. Both are furnished in the T6 temper. They have a moderately high 93% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is 206.0-T6 aluminum and the bottom bar is 772.0-T6 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
69
Elongation at Break, % 8.9
8.4
Fatigue Strength, MPa 94
94
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 380
320
Tensile Strength: Yield (Proof), MPa 240
250

Thermal Properties

Latent Heat of Fusion, J/g 390
380
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 650
630
Melting Onset (Solidus), °C 570
580
Specific Heat Capacity, J/kg-K 880
870
Thermal Conductivity, W/m-K 120
150
Thermal Expansion, µm/m-K 19
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
35
Electrical Conductivity: Equal Weight (Specific), % IACS 99
110

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.0
3.0
Embodied Carbon, kg CO2/kg material 8.0
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30
25
Resilience: Unit (Modulus of Resilience), kJ/m3 420
430
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
46
Strength to Weight: Axial, points 35
31
Strength to Weight: Bending, points 39
36
Thermal Diffusivity, mm2/s 46
58
Thermal Shock Resistance, points 20
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.3 to 95.3
91.2 to 93.2
Chromium (Cr), % 0
0.060 to 0.2
Copper (Cu), % 4.2 to 5.0
0 to 0.1
Iron (Fe), % 0 to 0.15
0 to 0.15
Magnesium (Mg), % 0.15 to 0.35
0.6 to 0.8
Manganese (Mn), % 0.2 to 0.5
0 to 0.1
Nickel (Ni), % 0 to 0.050
0
Silicon (Si), % 0 to 0.1
0 to 0.15
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0.1 to 0.2
Zinc (Zn), % 0 to 0.1
6.0 to 7.0
Residuals, % 0 to 0.15
0 to 0.15