MakeItFrom.com
Menu (ESC)

2117 Aluminum vs. 224.0 Aluminum

Both 2117 aluminum and 224.0 aluminum are aluminum alloys. They have a very high 98% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 2117 aluminum and the bottom bar is 224.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
71
Elongation at Break, % 26
4.0 to 10
Fatigue Strength, MPa 95
86 to 120
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 300
380 to 420
Tensile Strength: Yield (Proof), MPa 170
280 to 330

Thermal Properties

Latent Heat of Fusion, J/g 400
390
Maximum Temperature: Mechanical, °C 220
220
Melting Completion (Liquidus), °C 650
650
Melting Onset (Solidus), °C 550
550
Specific Heat Capacity, J/kg-K 880
870
Thermal Conductivity, W/m-K 150
120
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
32
Electrical Conductivity: Equal Weight (Specific), % IACS 120
95

Otherwise Unclassified Properties

Base Metal Price, % relative 10
11
Density, g/cm3 3.0
3.0
Embodied Carbon, kg CO2/kg material 8.2
8.3
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1150
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 64
16 to 35
Resilience: Unit (Modulus of Resilience), kJ/m3 190
540 to 770
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
45
Strength to Weight: Axial, points 28
35 to 38
Strength to Weight: Bending, points 33
38 to 41
Thermal Diffusivity, mm2/s 59
47
Thermal Shock Resistance, points 12
17 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91 to 97.6
93 to 95.2
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 2.2 to 4.5
4.5 to 5.5
Iron (Fe), % 0 to 0.7
0 to 0.1
Magnesium (Mg), % 0.2 to 1.0
0
Manganese (Mn), % 0.4 to 1.0
0.2 to 0.5
Silicon (Si), % 0.2 to 0.8
0 to 0.060
Titanium (Ti), % 0 to 0.25
0 to 0.35
Vanadium (V), % 0
0.050 to 0.15
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.25
0.1 to 0.25
Residuals, % 0 to 0.15
0 to 0.1