MakeItFrom.com
Menu (ESC)

2117 Aluminum vs. N06060 Nickel

2117 aluminum belongs to the aluminum alloys classification, while N06060 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2117 aluminum and the bottom bar is N06060 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
210
Elongation at Break, % 26
45
Fatigue Strength, MPa 95
230
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
82
Shear Strength, MPa 200
490
Tensile Strength: Ultimate (UTS), MPa 300
700
Tensile Strength: Yield (Proof), MPa 170
270

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 220
980
Melting Completion (Liquidus), °C 650
1510
Melting Onset (Solidus), °C 550
1450
Specific Heat Capacity, J/kg-K 880
430
Thermal Expansion, µm/m-K 24
12

Otherwise Unclassified Properties

Base Metal Price, % relative 10
65
Density, g/cm3 3.0
8.7
Embodied Carbon, kg CO2/kg material 8.2
12
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1150
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 64
250
Resilience: Unit (Modulus of Resilience), kJ/m3 190
180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
23
Strength to Weight: Axial, points 28
22
Strength to Weight: Bending, points 33
20
Thermal Shock Resistance, points 12
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91 to 97.6
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
19 to 22
Copper (Cu), % 2.2 to 4.5
0.25 to 1.3
Iron (Fe), % 0 to 0.7
0 to 14
Magnesium (Mg), % 0.2 to 1.0
0
Manganese (Mn), % 0.4 to 1.0
0 to 1.5
Molybdenum (Mo), % 0
12 to 14
Nickel (Ni), % 0
54 to 60
Niobium (Nb), % 0
0.5 to 1.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.2 to 0.8
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 0 to 0.25
0
Tungsten (W), % 0
0.25 to 1.3
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0