MakeItFrom.com
Menu (ESC)

213.0 Aluminum vs. 5083 Aluminum

Both 213.0 aluminum and 5083 aluminum are aluminum alloys. They have 89% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 213.0 aluminum and the bottom bar is 5083 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
75 to 110
Elastic (Young's, Tensile) Modulus, GPa 73
68
Elongation at Break, % 1.5
1.1 to 17
Fatigue Strength, MPa 93
93 to 190
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 28
26
Tensile Strength: Ultimate (UTS), MPa 190
290 to 390
Tensile Strength: Yield (Proof), MPa 130
110 to 340

Thermal Properties

Latent Heat of Fusion, J/g 410
400
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 670
640
Melting Onset (Solidus), °C 480
580
Specific Heat Capacity, J/kg-K 850
900
Thermal Conductivity, W/m-K 130
120
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
29
Electrical Conductivity: Equal Weight (Specific), % IACS 94
96

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.2
2.7
Embodied Carbon, kg CO2/kg material 7.7
8.9
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1090
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.5
4.2 to 42
Resilience: Unit (Modulus of Resilience), kJ/m3 120
95 to 860
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 44
50
Strength to Weight: Axial, points 16
29 to 40
Strength to Weight: Bending, points 23
36 to 44
Thermal Diffusivity, mm2/s 49
48
Thermal Shock Resistance, points 8.0
12 to 17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 83.5 to 93
92.4 to 95.6
Chromium (Cr), % 0
0.050 to 0.25
Copper (Cu), % 6.0 to 8.0
0 to 0.1
Iron (Fe), % 0 to 1.2
0 to 0.4
Magnesium (Mg), % 0 to 0.1
4.0 to 4.9
Manganese (Mn), % 0 to 0.6
0.4 to 1.0
Nickel (Ni), % 0 to 0.35
0
Silicon (Si), % 1.0 to 3.0
0 to 0.4
Titanium (Ti), % 0 to 0.25
0 to 0.15
Zinc (Zn), % 0 to 2.5
0 to 0.25
Residuals, % 0 to 0.5
0 to 0.15