MakeItFrom.com
Menu (ESC)

213.0 Aluminum vs. 5456 Aluminum

Both 213.0 aluminum and 5456 aluminum are aluminum alloys. They have 89% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 213.0 aluminum and the bottom bar is 5456 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
68
Elongation at Break, % 1.5
11 to 18
Fatigue Strength, MPa 93
130 to 210
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 28
26
Tensile Strength: Ultimate (UTS), MPa 190
320 to 340
Tensile Strength: Yield (Proof), MPa 130
150 to 250

Thermal Properties

Latent Heat of Fusion, J/g 410
390
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 670
640
Melting Onset (Solidus), °C 480
570
Specific Heat Capacity, J/kg-K 850
900
Thermal Conductivity, W/m-K 130
120
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
29
Electrical Conductivity: Equal Weight (Specific), % IACS 94
97

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.2
2.7
Embodied Carbon, kg CO2/kg material 7.7
9.0
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1090
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.5
33 to 46
Resilience: Unit (Modulus of Resilience), kJ/m3 120
170 to 470
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 44
50
Strength to Weight: Axial, points 16
33 to 35
Strength to Weight: Bending, points 23
38 to 40
Thermal Diffusivity, mm2/s 49
48
Thermal Shock Resistance, points 8.0
14 to 15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 83.5 to 93
92 to 94.8
Chromium (Cr), % 0
0.050 to 0.2
Copper (Cu), % 6.0 to 8.0
0 to 0.1
Iron (Fe), % 0 to 1.2
0 to 0.4
Magnesium (Mg), % 0 to 0.1
4.7 to 5.5
Manganese (Mn), % 0 to 0.6
0.5 to 1.0
Nickel (Ni), % 0 to 0.35
0
Silicon (Si), % 1.0 to 3.0
0 to 0.25
Titanium (Ti), % 0 to 0.25
0 to 0.2
Zinc (Zn), % 0 to 2.5
0 to 0.25
Residuals, % 0 to 0.5
0 to 0.15