MakeItFrom.com
Menu (ESC)

2195 Aluminum vs. 5657 Aluminum

Both 2195 aluminum and 5657 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 2195 aluminum and the bottom bar is 5657 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
68
Elongation at Break, % 9.3
6.6 to 15
Fatigue Strength, MPa 190
74 to 88
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 350
92 to 110
Tensile Strength: Ultimate (UTS), MPa 590
150 to 200
Tensile Strength: Yield (Proof), MPa 560
140 to 170

Thermal Properties

Latent Heat of Fusion, J/g 390
400
Maximum Temperature: Mechanical, °C 210
180
Melting Completion (Liquidus), °C 660
660
Melting Onset (Solidus), °C 550
640
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 130
210
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
54
Electrical Conductivity: Equal Weight (Specific), % IACS 100
180

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.5
Density, g/cm3 3.0
2.7
Embodied Carbon, kg CO2/kg material 8.6
8.4
Embodied Energy, MJ/kg 160
160
Embodied Water, L/kg 1470
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
9.7 to 27
Resilience: Unit (Modulus of Resilience), kJ/m3 2290
140 to 200
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
50
Strength to Weight: Axial, points 55
15 to 20
Strength to Weight: Bending, points 53
23 to 28
Thermal Diffusivity, mm2/s 49
84
Thermal Shock Resistance, points 26
6.7 to 8.6

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.9 to 94.9
98.5 to 99.4
Copper (Cu), % 3.7 to 4.3
0 to 0.1
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 0 to 0.15
0 to 0.1
Lithium (Li), % 0.8 to 1.2
0
Magnesium (Mg), % 0.25 to 0.8
0.6 to 1.0
Manganese (Mn), % 0 to 0.25
0 to 0.030
Silicon (Si), % 0 to 0.12
0 to 0.080
Silver (Ag), % 0.25 to 0.6
0
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.25
0 to 0.050
Zirconium (Zr), % 0.080 to 0.16
0
Residuals, % 0 to 0.15
0 to 0.050