MakeItFrom.com
Menu (ESC)

2195 Aluminum vs. 6008 Aluminum

Both 2195 aluminum and 6008 aluminum are aluminum alloys. They have a moderately high 95% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 2195 aluminum and the bottom bar is 6008 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
69
Elongation at Break, % 9.3
9.1 to 17
Fatigue Strength, MPa 190
55 to 88
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 350
120 to 170
Tensile Strength: Ultimate (UTS), MPa 590
200 to 290
Tensile Strength: Yield (Proof), MPa 560
100 to 220

Thermal Properties

Latent Heat of Fusion, J/g 390
410
Maximum Temperature: Mechanical, °C 210
180
Melting Completion (Liquidus), °C 660
640
Melting Onset (Solidus), °C 550
620
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 130
190
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
49
Electrical Conductivity: Equal Weight (Specific), % IACS 100
160

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.5
Density, g/cm3 3.0
2.7
Embodied Carbon, kg CO2/kg material 8.6
8.5
Embodied Energy, MJ/kg 160
160
Embodied Water, L/kg 1470
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
24 to 28
Resilience: Unit (Modulus of Resilience), kJ/m3 2290
76 to 360
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
50
Strength to Weight: Axial, points 55
21 to 29
Strength to Weight: Bending, points 53
28 to 35
Thermal Diffusivity, mm2/s 49
77
Thermal Shock Resistance, points 26
9.0 to 13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.9 to 94.9
96.5 to 99.1
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 3.7 to 4.3
0 to 0.3
Iron (Fe), % 0 to 0.15
0 to 0.35
Lithium (Li), % 0.8 to 1.2
0
Magnesium (Mg), % 0.25 to 0.8
0.4 to 0.7
Manganese (Mn), % 0 to 0.25
0 to 0.3
Silicon (Si), % 0 to 0.12
0.5 to 0.9
Silver (Ag), % 0.25 to 0.6
0
Titanium (Ti), % 0 to 0.1
0 to 0.1
Vanadium (V), % 0
0.050 to 0.2
Zinc (Zn), % 0 to 0.25
0 to 0.2
Zirconium (Zr), % 0.080 to 0.16
0
Residuals, % 0 to 0.15
0 to 0.15