MakeItFrom.com
Menu (ESC)

2195 Aluminum vs. AISI 310S Stainless Steel

2195 aluminum belongs to the aluminum alloys classification, while AISI 310S stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2195 aluminum and the bottom bar is AISI 310S stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 9.3
34 to 44
Fatigue Strength, MPa 190
250 to 280
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
79
Shear Strength, MPa 350
420 to 470
Tensile Strength: Ultimate (UTS), MPa 590
600 to 710
Tensile Strength: Yield (Proof), MPa 560
270 to 350

Thermal Properties

Latent Heat of Fusion, J/g 390
310
Maximum Temperature: Mechanical, °C 210
1100
Melting Completion (Liquidus), °C 660
1450
Melting Onset (Solidus), °C 550
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 130
16
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 31
25
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.6
4.3
Embodied Energy, MJ/kg 160
61
Embodied Water, L/kg 1470
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
200 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 2290
190 to 310
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 55
21 to 25
Strength to Weight: Bending, points 53
20 to 22
Thermal Diffusivity, mm2/s 49
4.1
Thermal Shock Resistance, points 26
14 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.9 to 94.9
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 3.7 to 4.3
0
Iron (Fe), % 0 to 0.15
48.3 to 57
Lithium (Li), % 0.8 to 1.2
0
Magnesium (Mg), % 0.25 to 0.8
0
Manganese (Mn), % 0 to 0.25
0 to 2.0
Nickel (Ni), % 0
19 to 22
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.12
0 to 1.5
Silver (Ag), % 0.25 to 0.6
0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.080 to 0.16
0
Residuals, % 0 to 0.15
0